I M.Tech - I Semester - Regular/Supplementary Examinations January - 2017

FINITE ELEMENT METHODS
 (MACHINE DESIGN)

Duration: 3 hours
Max. Marks: 70
Answer any FIVE questions. All questions carry equal marks

1. Determine the deflection at the centre of a simply supported beam of span length l subjected to uniformly distributed load w/unit length throughout its length as shown in Figure-1 using Rayleigh-Ritz method. Take the flexural rigidity, EI is constant for the beam.

14 M

Figure-1
2. An axial load of 300 kN is applied at $20^{\circ} \mathrm{C}$ to the rod as shown in Figure-2. The temperature is then raised to $60^{\circ} \mathrm{C}$. Determine:
a) Nodal displacements 6 M
b) Reaction forces at the support. 4 M
c) stresses in elements

4 M

Aluminum	Steel
$\mathrm{E}_{1}=70 \mathrm{GPa}$	$\mathrm{E}_{2}=200 \mathrm{GPa}$
$\mathrm{A}_{1}=900 \mathrm{~mm}^{2}$	$\mathrm{~A}_{2}=1200 \mathrm{~mm}^{2}$
$\alpha_{1}=23 \times 10^{-6} /^{\circ} \mathrm{C}$	$\alpha_{2}=12 \times 10^{-6} \rho^{\circ} \mathrm{C}$
$\mathrm{L}_{1}=200 \mathrm{~mm}$	$\mathrm{~L}_{2}=300 \mathrm{~mm}$

Figure-2
3. a) Derive the stiffness matrix for the truss element.

9 M
b) Briefly discuss about the effect of temperatures on truss element.
4. A beam fixed at one end and supported by a roller at the other end, has a 20 kN concentrated load applied at the center of the span, as shown in Figure-3. Calculate the deflection under the load and support reactions.

Figure-3
5. Compute the strain-displacement matrix for the element show in Figure-4. Also determine the element strains. Take

$$
u=\left[\begin{array}{lllll}
0 & 0 & 2 & 1 & 0
\end{array}-1\right]^{\mathrm{T}} \text {. All quantities are in } \mathrm{mm} \text {. }
$$

Figure-4
6. a) Evaluate the following integral using one point and two point Gauss Quadrature. Compare this with exact solution.

10 M

$$
\int_{-1}^{1}\left[3 e^{x}+x^{2}+\frac{1}{x+2}\right] \mathrm{dx}
$$

b) Differentiate sub-parametric and super-parametric elements.

4 M
7. Determine the Eigen values and Eigen vectors for stepped bar shown in Figure-5. Take E $=200 \mathrm{GPa}$ and Specific density $\rho=7000 \mathrm{~kg} / \mathrm{m}^{3}$

14 M

Figure-5
8. Explain the following:
a) h-refinement and p-refinement 4 M
b) Complete and incomplete interpolation functions. 4 M
c) Convergence requirements 6 M

